Abstract
Aims: C6 quadriplegic patients lack voluntary control of their triceps muscle but can still perform reaching movements to grasp objects or point to targets. The present study documents the kinematic properties of reaching in these patients. Materials and methods: We investigated the kinematics of prehension and painting movements in four quadriplegic patients and five control subjects. Prehension and pointing movements were recorded for each subject using various object positions (i.e., different directions and distances from the subject). The 3D motion was analyzed with Fastrack Polhemus sensors. Results: During prehension tasks, the velocity profile of control subjects showed two peaks (go and return); the first velocity peak was scaled to the distance of the object. In quadriplegic patients, there was a third intermediary peak corresponding to the grasping of the object. The amplitude of the first peak was slightly smaller than in control subjects. Velocity was scaled to the distance of the object, but with a greater dispersion than in control subjects. Total movement time was longer in quadriplegics because of the prolonged grasping phase. There were few differences in the pointing movements of normal and quadriplegic subjects. The scapula contributed more to the reaching phase of both movements in quadriplegic patients. Conclusion: In spite of some quantitative differences, the kinematics of the hand during reaching and pointing in quadriplegic patients are surprisingly similar to those of control subjects.

Author Keywords
3-D motion analysis; Pointing movements; Prehension; Reaching; Spinal cord injury; Tetraplegia

Index Keywords
adult, amplitude modulation, arm movement, article, biosensor, case report, clinical trial, controlled clinical trial, controlled study, female, hand function, human, kinetics, male, motion, motor dysfunction, priority journal, quadriplegia, scapula, velocity, vertebra fracture; Adult, Arm, Biomechanics, Cervical Vertebrae, Female, Hand, Hand Strength, Humans, Male, Middle Aged, Movement, Quadriplegia, Spinal Cord Injuries

Tradenames
Fastrack, Polhemus; Spatial Tracking System VPL, Polhemus

Manufacturers
Polhemus

References
An, K.N.
Muscles across the elbow joint: A biomechanical analysis

- Marciello, M.A., Herbison, G.J., Cohen, M.E., Schmidt, R.
 Elbow extension using anterior deltoids and upper pectorals in spinal cord-injured subjects

- Welch, R.D., Lobley, J.J., O'Sullivan, S.B., Freed, M.M.
 Functional independence in quadriplegia; Critical levels

- Yarkony, G.M., Roth, E.J., Heinemann, A.W., Lowell, L.
 Rehabilitation outcomes in C6 tetraplegia

- Tobis, J.S., Hong, C.Z.
 Muscle testing

- Jeannerod, M.
 The Neural and Behavioural Organisation of Goal-directed Movements,
 Oxford, Clarendon Press

- Jeannerod, M.
 The timing of natural prehension movements

- Paulignan, Y., Frak, V.G., Toni, I., Jeannerod, M.
 Influence of object position and size on human prehension movements

- Abend, W., Bizzi, E., Morasso, P.
 Human arm trajectory formation

- Wing, A.M., Haggard, P., Flanagan, J.R.
 Hand and brain

- Popovic, M., Tomovic, R., Popovic, D.
 Joint angle synergy in control of arm movements
 (1993) Ser Aut Control, 1, pp. 5-17.

- Popovic, M., Popovic, D.
 A new approach to reaching control for quadriplegic subjects

- Wierzbicka, M.M., Wiegner, A.W.
 Effects of weak antagonist on fast elbow flexion movements in man
• Wierzbicka, M.M., Wiegner, A.W.
 Accuracy of motor responses in subjects with and without control of antagonist muscle

• Roby-Brami, A., Fuchs, S., Mokhtari, M., Bussel, B.
 Reaching and grasping strategies in hemiparetic patients

• Bootsma, R.J., Marteniuk, R.G., MacKenzie, C.L., Zaal, F.T.J.M.
 The speed-accuracy trade-off in manual prehension: Effects of movement amplitude, object size and object width on kinematic characteristics

• Castiello, H., Bennet, K.M.B., Stelmach, G.E.
 Reach to grasp: The natural response to perturbation of object size

• Paulignan, Y., Jeannerod, M., MacKenzie, C., Marteniuk, R.
 Selective perturbation of visual input during prehension movements. 2: The effects of changing object size

• Kaminski, T.R., Bock, C., Gentile, A.M.
 The coordination between trunk and arm motion during pointing movements

• Mouchnino, L.
 Is the regulation of the center of mass maintained during leg movement under microgravity conditions

• Soechting, J.F., Lacquaniti, F.
 Invariant characteristics of pointing movement in man

• Lacquaniti, F., Soechting, J.F.
 Coordination of arm and wrist motion during a reaching task

• McDowell, C., Moberg, E.A., House, J.H.
 The second international conference on surgical rehabilitation of the upper limb in tetraplegia

Correspondence Address
Laffont I.; Serv. Medecine Physique Readaptation; Unite Widal 1; Hopital Raymond POINCARE;
104, Boulevard Raymond POINCARE 92380 Garches, France

ISSN: 13624393
CODEN: SPCOF
Language of Original Document: English
Abbreviated Source Title: Spinal Cord
Document Type: Article
Source: Scopus